

ANALISTA DE PESQUISA ENERGÉTICA GÁS E BIOENERGIA

LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO.

- 01 Você recebeu do fiscal o seguinte material:
 - a) este caderno, com os enunciados das 50 (cinquenta) questões das Provas Objetivas e das 2 (duas) questões da Prova Discursiva, sem repetição ou falha, com a seguinte distribuição:

LÍNGUA PO	RTUGUESA	LÍNGUA	INGLESA	CONHECIMENTOS ESPECÍFICOS	
Questões	Pontos	Questões	Pontos	Questões	Pontos
1 a 5	2,0	11 a 15	1,0	21 a 30	1,5
6 a 10	3,0	16 a 20	2,0	31 a 40	2,0
				41 a 50	2,5

PROVA DI	SCURSIVA
Questões	Pontos
1 e 2	25,0 cada

- b) um Caderno de Respostas para o desenvolvimento da Prova Discursiva, grampeado ao CARTÃO-RESPOSTA destinado às marcações das respostas das questões objetivas formuladas nas provas.
- Verifique se este material está em ordem e se o seu nome e número de inscrição conferem com os que aparecem no CARTÃO-RESPOSTA. Caso contrário, notifique o fato IMEDIATAMENTE ao fiscal.
- 03 Após a conferência, o candidato deverá assinar, no espaço próprio do CARTÃO-RESPOSTA, a caneta esferográfica transparente de tinta na cor preta.
- O4 No CARTÃO-RESPOSTA, a marcação das letras correspondentes às respostas certas deve ser feita cobrindo a letra e preenchendo todo o espaço compreendido pelos círculos, a caneta esferográfica transparente de tinta na cor preta, de forma contínua e densa. A LEITORA ÓTICA é sensível a marcas escuras, portanto, preencha os campos de marcação completamente, sem deixar claros.

Exemplo: (A)

(C

(D)

- **05 -** Tenha muito cuidado com o **CARTÃO-RESPOSTA**, para não o **DOBRAR, AMASSAR ou MANCHAR**. O **CARTÃO-RESPOSTA SOMENTE** poderá ser substituído se, no ato da entrega ao candidato, já estiver danificado.
- Para cada uma das questões objetivas, são apresentadas 5 alternativas classificadas com as letras (A), (B), (C), (D) e (E); só uma responde adequadamente ao quesito proposto. Você só deve assinalar UMA RESPOSTA: a marcação em mais de uma alternativa anula a questão, MESMO QUE UMA DAS RESPOSTAS ESTEJA CORRETA.
- 07 As questões objetivas e as discursivas são identificadas pelo número que se situa acima de seu enunciado.
- 08 SERÁ ELIMINADO do Processo Seletivo Público o candidato que:
 - a) se utilizar, durante a realização das provas, de máquinas e/ou relógios de calcular, bem como de rádios gravadores, headphones, telefones celulares ou fontes de consulta de qualquer espécie;
 - b) se ausentar da sala em que se realizam as provas levando consigo o CADERNO DE QUESTÕES e/ou o CARTÃO--RESPOSTA e/ou o Caderno de Respostas da Prova Discursiva;
 - c) se recusar a entregar o CADERNO DE QUESTÕES e/ou o CARTÃO-RESPOSTA e/ou o Caderno de Respostas da Prova Discursiva, quando terminar o tempo estabelecido.
 - d) não assinar a LISTA DE PRESENÇA e/ou o CARTÃO-RESPOSTA.
 - Obs.: O candidato só poderá se ausentar do recinto das provas após 1 (uma) hora contada a partir do efetivo início das mesmas. Por motivos de segurança, o candidato NÃO PODERÁ LEVAR O CADERNO DE QUESTÕES e/ou o CARTÃO--RESPOSTA e/ou o Caderno de Respostas da Prova Discursiva, a qualquer momento.
- Reserve os 30 (trinta) minutos finais para marcar seu CARTÃO-RESPOSTA. Os rascunhos e as marcações assinaladas no CADERNO DE QUESTÕES NÃO SERÃO LEVADOS EM CONTA.
- 10 Quando terminar, entregue ao fiscal o CADERNO DE QUESTÕES e o CARTÃO-RESPOSTA grampeado ao Caderno de Respostas da Prova Discursiva e ASSINE a LISTA DE PRESENÇA.
- 11 O TEMPO DISPONÍVEL PARA ESTAS PROVAS DE QUESTÕES OBJETIVAS E DISCURSIVAS É DE 4 (QUATRO)
 HORAS, incluído o tempo para a marcação do seu CARTÃO-RESPOSTA.
- 12 As questões e os gabaritos das Provas Objetivas serão divulgados no primeiro dia útil após a realização das mesmas, no endereço eletrônico da FUNDAÇÃO CESGRANRIO (http://www.cesgranrio.org.br).

CONHECIMENTOS ESPECÍFICOS

Considere o texto a seguir para responder às questões de $n^{\underline{os}}$ 21 e 22.

Em muitos lugares do planeta — tanto em terra quanto no mar —, o gás natural é encontrado em reservatórios subterrâneos. É considerável o número de reservatórios que contêm gás natural associado ao petróleo. Nesse caso, o gás recebe a designação de gás natural associado.

Quando o reservatório contém pouca ou nenhuma quantidade de petróleo, o gás natural é dito não associado; assim, o gás natural, como encontrado na natureza, é uma mistura variada de hidrocarbonetos. Uma grande vantagem dessa fonte de origem fóssil é o baixo nível de enxofre.

A tabela abaixo mostra a proporção média de hidrocarbonetos presentes (P, Q, R e outros) no gás natural de diferentes origens.

Proporção de hidrocarbonetos presentes no gás natural de diferentes origens

Origon	Com	posição e	n % de vo	lume
Origem	Р	Q	R	Outros
Bolívia	90,8	6,1	1,2	0
Rio de Janeiro	89,44	6,7	2,26	0,46
Venezuela	78	9,9	5,5	4,9
Golfo Pérsico	66	14	10,5	7,0

Disponível em: http://www.gasnet.com.br>. Acesso em: 02 out. 2011. Adaptado.

21

Em relação aos hidrocarbonetos, constata-se que o

- (A) P é o etano, e o Q é o propano.
- (B) P é o metano, e o Q é o etano.
- (C) P é o metano, e o Q é o propano.
- (D) Q é o metano, e o R é o propano.
- (E) Q é o etano, e o R é o metano.

22

O reduzido teor de enxofre no gás natural **NÃO** contribui significativamente para a formação de

- (A) gás sulfídrico na atmosfera, que é a principal substância responsável pela formação de chuva ácida.
- (B) anidrido sulfúrico na atmosfera, que é a única substância responsável pela formação de chuva ácida.
- (C) anidrido sulfuroso na atmosfera, que é a única substância responsável pela formação de chuva ácida.
- (D) anidridos sulfúrico e sulfídrico na atmosfera, que são duas das principais substâncias responsáveis pela formação de chuva ácida.
- (E) anidridos sulfúrico e sulfuroso na atmosfera, que são duas das principais substâncias responsáveis pela formação de chuva ácida.

Uma solução diluída de ácido sulfúrico foi empregada no pré-tratamento de material lignocelulósico por via ácida. Tal solução foi preparada diluindo-se 200 vezes uma solução de ácido sulfúrico, com concentração igual a 196 g/L.

Após o pré-tratamento ácido, seguiu-se uma etapa de filtração, em que foram obtidos 200 m³ de hidrolisado ácido rico em pentoses. Com o intuito de aproveitar esse hidrolisado para a produção de etanol de segunda geração a partir da fermentação das pentoses, realizou-se um tratamento visando à neutralização, empregando-se óxido de cálcio, sendo formado um precipitado branco. Após outra etapa de filtração para a remoção do precipitado, obteve-se o hidrolisado neutralizado e clarificado.

A partir desses dados e assumindo que a acidez do hidrolisado decorreu exclusivamente da dissociação total do ácido sulfúrico, conclui-se que o pH e a massa de precipitado formado na reação de neutralização foram, respectivamente,

- (A) 0,2 e 27,2 kg
- (B) 0,2 e 272 kg
- (C) 2,0 e 88 kg
- (D) 2,0 e 136 kg
- (E) 2,0 e 272 kg

24

Os tipos de gasodutos são definidos na Lei n^{o} 11.909, de 04/03/2009.

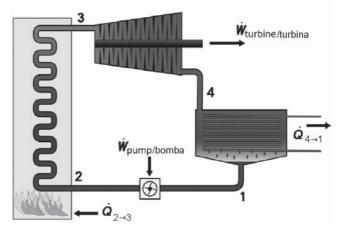
Considere as informações a seguir a esse respeito.

- O gasoduto de transferência realiza a movimentação de gás natural, desde as instalações de processamento, estocagem ou outros gasodutos de transporte até as instalações de estocagem, outros gasodutos de transporte e pontos de entrega a concessionários estaduais de distribuição do produto.
- II O gasoduto de escoamento da produção refere-se aos dutos integrantes das instalações de produção, destinados à movimentação de gás natural, desde os poços produtores até as instalações de processamento e tratamento ou unidades de liquefação.
- III O gasoduto de transporte é destinado à movimentação de gás natural, considerado de interesse específico e exclusivo de seu proprietário, iniciando e terminando em suas próprias instalações de produção, coleta, transferência, estocagem e processamento de gás natural.

Estão corretas as afirmações

- (A) I, apenas.
- (B) II, apenas.
- (C) I e II, apenas.
- (D) II e III, apenas.
- (E) I, II e III.

25


Um mol de um gás ideal monoatômico é submetido a um ciclo formado pelos seguintes processos: A \rightarrow B uma compressão isobárica a P₀, de 2 V₀ a V₀; B \rightarrow C um processo isocórico de P₀ a 2P₀; C \rightarrow D uma expansão isobárica; D \rightarrow A um processo isocórico de 2P₀ a P₀.

Com base nesses dados, constata-se que a eficiência do ciclo será

- (A) 2/13
- (B) 13/2
- (C) 1/4
- (D) 0
- (E) 1

26

Uma máquina a vapor, seguindo um ciclo de Rankine, é representada na figura abaixo. A energia interna da água é E, e sua entalpia é H. O ciclo corresponde a: 1→2 bombeamento adiabático; 2→3 aquecimento isobárico; 3→4 expansão adiabática na turbina; 4→1 condensação isobárica.

Disponível em: http://en.wikipedia.org/wiki/Rankine_cycle. Acesso em: 30 jan. 2012. Adaptado.

Considerando-se esses dados, constata-se que o trabalho realizado no ciclo é

- (A) $W_{turbina} W_{bomba}$, e o calor injetado acontece em 2 \rightarrow 3, tendo por valor E_3 - E_2 .
- (B) $W_{\rm turbina} W_{\rm bomba}$, e o calor injetado acontece em 2 \longrightarrow 3, tendo por valor H_3 - H_2 .
- (C) $W_{turbina} W_{bomba}$, e o calor injetado acontece em 4 \longrightarrow 1, tendo por valor H_4 - H_1 .
- (D) $W_{turbina} W_{bomba}$, e o calor injetado acontece em 4 \rightarrow 1, tendo por valor E_4 - E_1 .
- (E) $W_{bomba} W_{turbina}$, e o calor injetado acontece em 2 \rightarrow 3, tendo por valor H_3 - H_2 .

A empresa X firmou contrato de concessão para exploração de gás natural sobre determinado bloco. Mais tarde, nesse mesmo bloco, outro recurso natural foi descoberto.

Nesse caso, as regras estabelecem que a empresa

- (A) deverá rescindir o contrato, por alteração do objeto.
- (B) deverá rescindir o contrato e ter assegurado o direito à indenização pela exploração realizada até o momento da descoberta.
- (C) poderá explorar o referido recurso natural, desde que comunique previamente a descoberta à ANP.
- (D) poderá explorar o referido recurso natural, não tendo o dever de informar a descoberta à ANP.
- (E) não poderá explorar o referido recurso e deverá informar a descoberta à ANP.

28

Duto é a designação genérica da ligação de tubos destinados ao transporte de petróleo e seus derivados, e também de gás natural. Os tubos são classificados em oleodutos quando transportam petróleo e seus derivados, e em gasodutos, quando transportam gases. No projeto e na construção de gasodutos, são necessários alguns acessórios que visem ao monitoramento, à prevenção de danos e à segurança durante a operação.

Com esse objetivo, deve ser prevista a instalação de

- (A) lançador/recebedor de pigs ao longo do gasoduto
- (B) lançador/recebedor de *pigs* na extremidade inicial do gasoduto
- (C) tubos-camisa em toda a extensão do gasoduto
- (D) tubos-camisa abaixo de ferrovias, rodovias de porte e áreas alagadas
- (E) válvulas de bloqueio automático nas extremidades inicial e final do gasoduto

29

Um conjunto cilindro-pistão contém inicialmente 0,20 m³ de nitrogênio a 130 kPa e 120 °C. O nitrogênio é expandido politropicamente até um estado final de 100 kPa e 100 °C.

Sabendo-se que o nitrogênio pode ser considerado como um gás ideal com $R=0.3\ kJ/kg.K$, o volume ocupado pelo gás, em m^3 , no estado final, é dado por

- (A) 0,21
- (B) 0,25
- (C) 0.32
- (D) 0,35
- (E) 0,45

30

Se o Produto Interno Bruto (PIB) de um país for igual às suas importações, então seu(sua)

- (A) balanço de pagamentos é deficitário.
- (B) consumo doméstico pode exceder o PIB.
- (C) renda nacional bruta excede o PIB.
- (D) taxa de câmbio tende a se desvalorizar.
- (E) poupança interna é nula.

31

Uma família gastava 30% da sua renda mensal com despesas de habitação. Em um determinado período, as despesas com habitação cresceram 4%, a renda familiar cresceu 10%, enquanto as demais despesas não sofreram variação.

Com base nesses dados, conclui-se que a porcentagem aproximada da renda dessa família que passou a ser gasta com a despesa de habitação é de

- (A) 24%
- (B) 25%
- (C) 26%
- (D) 28%
- (E) 32%

32

A cadeia produtiva do gás natural pode ser categorizada em dois grandes blocos: um, que congrega atividades relacionadas à obtenção do produto, chamada de *upstream*, e outro, com atividades relacionadas à aplicação direta do produto, chamado de *downstream*.

São exemplos de atividades exclusivamente *upstream*:

- (A) exploração, distribuição e geração de energia elétrica
- (B) exploração, transporte e climatização
- (C) exploração, processamento, transporte e distribuição
- (D) exploração, processamento, armazenamento e cogeração
- (E) processamento, armazenamento, cogeração e transporte

33

Na logística de distribuição de etanol no Brasil, são utilizados os modais aquaviário, dutoviário, rodoviário e ferroviário.

Em relação a esse tema, observa-se que, no fluxo de

- (A) coleta das usinas às bases distribuidoras ou terminais, predomina o modal aquaviário, com a utilização de barcaças de médio porte.
- (B) coleta das usinas às bases distribuidoras ou terminais, predominam os modais ferroviário e rodoviário, com a utilização de bitrens para longas distâncias, ou de semirreboques para médias distâncias.
- (C) transferência entre bases de distribuição e/ou terminais, predomina o modal ferroviário, com a utilização de bitrens para médias e longas distâncias.
- (D) transferência entre bases de distribuição e/ou terminais, predomina o modal rodoviário, com a utilização de bitrens para longas distâncias ou de semirreboques para médias distâncias.
- (E) entrega das bases de distribuição aos postos, predomina o modal ferroviário, com a utilização de bitrens para médias e longas distâncias.

Coloca-se uma bandeja metálica de espessura D sobre um reservatório térmico a uma temperatura T_R = 373 K. Sobre essa bandeja, coloca-se uma placa de gelo (temperatura T_G = 273 K) de mesma área. Durante 10 minutos, observa-se que uma quantidade M = 0,50 kg de gelo derrete.

Se o experimento for repetido, com uma nova bandeja do mesmo metal e de mesma área, mas de espessura 2D e com um novo reservatório de temperatura T_R ' = 473 K, qual será, em kg, a quantidade de gelo derretido em 20 minutos?

- (A) 0.25
- (B) 0,5
- (C) 1,0
- (D) 2,0
- (E) 4,0

Considere o texto a seguir para responder às questões de nos 35 e 36.

O biodiesel é um combustível feito a partir de óleos vegetais ou de gordura animal, que pode ser utilizado nos carros ou caminhões. Atualmente, o biodiesel vendido nos postos do Brasil possui 5% de biodiesel e 95% de diesel (B5). Esse combustível só pode ser usado em motores a diesel, sendo, portanto, um substituto do diesel. Existem muitas espécies vegetais no Brasil que podem ser usadas na produção do biodiesel, como, entre outros, o óleo de girassol, de amendoim, de mamona e de soja. O principal processo industrial para a transformação do óleo vegetal em biodiesel é a transesterificação, com o emprego de catalisadores ácidos, básicos ou enzimáticos, podendo ser a catálise homogênea ou heterogênea. Os óleos vegetais e as gorduras são basicamente compostos de triglicerídeos, ésteres de glicerol e ácidos graxos.

Disponível em: http://www.biodieselbr.com. Acesso em: 15 out. 2011. Adaptado.

35

Em relação às matérias-primas e aos seus constituintes, que visam à produção industrial de biodiesel, constata-se que os ácidos graxos

- (A) predominantes na soja são os ácidos oleico e linoleico.
- (B) presentes nas gorduras animais são monoinsaturados.
- (C) presentes na matéria-prima não influenciam na qualidade e nas propriedades do biodiesel.
- (D) de origem vegetal podem conter entre duas e quatro ligações duplas
- (E) de origem vegetal diferem basicamente entre si somente pelo comprimento de sua cadeia de hidrocarboneto.

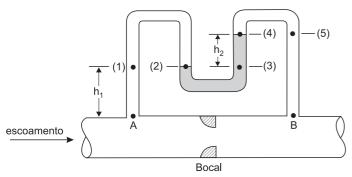
36

Relacione as matérias-primas para a produção de biodiesel com as características da planta e do cultivo que entram em sua composição.

- I Soja
- II Palma
- III Mamona
- P O período de colheita é de 12 meses por ano, com produtividade entre 3 e 6 toneladas de óleo/hectare e teor médio de óleo na semente de 22%.
- Q O período de colheita é de 12 meses por ano, com produtividade de 1,3 a 1,9 toneladas de óleo/hectare e teor médio de óleo na semente de 60%.
- R O período de colheita é de 03 meses por ano com produtividade de 0,5 a 0,9 toneladas de óleo/hectare, apresentando, em média, 50% de óleo na semente.
- S O período de colheita é de 03 meses por ano, com produtividade de 0,2 a 0,4 toneladas de óleo/hectare, apresentando, em média, 25% de óleo na semente.

As associações corretas são:

- (A) I Q, II R, III S
- (B) I Q, II S, III P
- (C) I R, II Q, III S
- (D) I S, II P, III R
- (E) I S, II Q, III R


37

De acordo com o Regulamento Técnico nº 2/2011 (Regulamento técnico de dutos terrestres para movimentação de petróleo, derivados e gás natural) da Agência Nacional de Petróleo (ANP), o transportador de gás natural deve instalar e manter marcos de sinalização ao longo das Faixas de Dutos.

Esses marcos de sinalização têm a finalidade de identificar as instalações e de alertar o público sobre a existência dessas instalações nos(as)

- (A) cruzamentos de vias públicas e privadas em, pelo menos, um dos lados da via.
- (B) cruzamentos de vias públicas e privadas em, pelo menos, um dos lados da via, desde que haja grande circulação de pessoas e veículos.
- (C) cruzamentos de vias públicas e privadas, em ambos os lados da via, desde que haja grande circulação de pessoas e veículos.
- (D) travessias submersas em, pelo menos, uma das margens da área alagada.
- (E) travessias submersas, em ambas as margens da área alagada.

Conforme ilustrado na figura abaixo, um fluido escoa em uma tubulação.

MUNSON, B.R. et al. **Fundamentos da Mecânica dos Fluidos**. Edgard Blucher, 2004. Adaptado.

Considerando o peso específico γ_1 do fluido que escoa e o peso específico γ_2 do fluido manométrico, obtém-se para a queda de pressão P_A-P_B

(A)
$$P_A - P_B = h_2(\gamma_2 - \gamma_1)$$

(B)
$$P_A - P_B = h_2(\gamma_2 + \gamma_1)$$

(C)
$$P_A - P_B = h_2(\gamma_2 + \gamma_1)/2$$

(D)
$$P_{\Delta} - P_{B} = (\gamma_{2} - \gamma_{1})/h_{2}$$

(E)
$$P_A - P_B = (\gamma_2 + \gamma_1)/h_2$$

39

A especificação do biodiesel comercializado no Brasil, bem como os procedimentos a serem adotados pelos produtores e distribuidores são determinados na Resolução ANP n^{o} 7, de 19/03/2008.

De acordo com essa resolução, entre os ensaios obrigatórios na especificação do biodiesel, constam:

- (A) pH, massa específica a 20 °C e número de cetano
- (B) pH, ponto de ebulição e viscosidade cinemática a 40 °C
- (C) ponto de ebulição, massa específica a 20 °C e viscosidade cinemática a 40 °C
- (D) ponto de fulgor, massa específica a 20 °C e viscosidade cinemática a 40 °C
- (E) ponto de fulgor, ponto de ebulição e número de cetano

40

A Economia Ambiental Neoclássica surgiu a partir do momento em que o mainstream econômico se viu compelido a incorporar em seu esquema analítico considerações acerca da problemática ambiental. Isso porque o sistema econômico é visto como a principal fonte de pressão sobre o meio ambiente, sendo necessário, pois, que a análise econômica dominante apresentasse respostas sobre sua relação traumática com os sistemas naturais. A economia ecológica explicita as trocas de matéria e energia entre o sistema econômico e o meio ambiente, isto é, para os economistas ecológicos, a análise do sistema econômico não pode desconsiderar os fundamentos biofísico-ecológicos que regulam o sistema natural que sustenta e fornece matéria e energia para o sistema econômico.

Disponível em <www.eco.unicamp.br>. Acesso em: 31 maio 2008. Adaptado.

Levando-se em consideração as economias neoclássica e ecológica, uma de suas bases teóricas **NÃO** está adequadamente apresentada em:

- (A) a economia ecológica explicita as trocas de matéria e energia entre o sistema econômico e o meio ambiente, mediante a aplicação das leis da termodinâmica e suas implicações para a dinâmica econômica.
- (B) a teoria neoclássica, mediante o reconhecimento de que a economia retira recursos naturais do meio ambiente e os devolve sob a forma de rejeitos e resíduos dos processos de produção e consumo, levou à incorporação do princípio do balanço de materiais nos modelos econômicos.
- (C) a teoria neoclássica defende a ideia de que o meio ambiente é fornecedor de materiais e, ao mesmo tempo, receptor de resíduos, fazendo com que a análise econômica se preocupasse com temas ligados à escassez de recursos e com a poluição gerada pelo sistema econômico.
- (D) as duas teorias são caracterizadas por uma abordagem transdisciplinar das interações do sistema econômico e seu meio externo, compatibilizando e mediando os conceitos de dimensão biofísico-ecológica e os conceitos de dimensão socioeconômica normativa.
- (E) as duas correntes apresentam um ponto em comum, que é o foco nas interações do sistema econômico com o seu meio externo.

41

O processo Y_t cuja função de autocorrelação p_k = 0 para $\forall_{\nu} \neq 0$ é o

- (A) ruído branco
- (B) processo AR(p)
- (C) processo MA(q)
- (D) processo ARMA(p, q)
- (E) processo ARIMA(p, d, q)

De acordo com a definição constante na Resolução ANP n° 7, de 19/03/2008, o biodiesel é um combustível derivado de óleos vegetais ou de gorduras animais. Ele pode ser produzido tanto por reação de transesterificação como por esterificação, em rota metílica ou etílica.

Disponível em: http://www.anp.gov.br>. Acesso em 14 out. 2011. comparação entre essas duas rotas, constata-se que

Por comparação entre essas duas rotas, constata-se que a rota

- (A) metílica é predominante no Brasil, devido ao fato de ela apresentar vantagens do ponto de vista de tecnologia do processo, como o menor consumo de metanol comparado ao de etanol.
- (B) metílica é predominante no Brasil, devido ao fato de o país ser um grande produtor de metanol.
- (C) etílica é predominante no Brasil, devido ao fato de ela apresentar vantagens do ponto de vista de tecnologia do processo, como o menor consumo de etanol, comparado ao de metanol.
- (D) etílica é predominante no Brasil, porque gera uma menor quantidade de glicerol.
- (E) etílica ou metílica, independente de qual seja, oferece a possibilidade de ocorrência de sinergia entre as cadeias energéticas.

43

O Decreto nº 7.382, de 02/12/2010, regulamenta os Capítulos de I a VI e VIII da Lei nº 11.909, de 04/03/2009. Ele dispõe sobre as atividades relativas ao transporte de gás natural, de que trata o artigo 177 da Constituição Federal, bem como sobre as atividades de tratamento, processamento, estocagem, liquefação, regaseificação e comercialização desse tipo de gás.

Em relação à estocagem de gás natural, o citado decreto estabelece que, mediante concessão, precedida de licitação ou de autorização, essa atividade será exercida por

- (A) sociedade ou consórcio, desde que constituídos sob as leis brasileiras, com sede e administração no país, por conta e risco do empreendedor.
- (B) sociedade ou consórcio, desde que constituídos sob as leis brasileiras, com sede e administração no país, por conta e risco compartilhados entre a União e o empreendedor.
- (C) sociedade ou consórcio, desde que constituídos sob as leis internacionais, com sede e administração no país ou no exterior, por conta e risco do empreendedor.
- (D) empresas de capital privado, apenas, desde que constituídas sob as leis brasileiras, com sede e administração no país, por conta e risco compartilhados entre a União e o empreendedor.
- (E) empresas de capital privado, apenas, desde que constituídas sob as leis internacionais, com sede e administração no país ou no exterior, por conta e risco do empreendedor.

44

No Brasil, a produção de etanol combustível é feita majoritariamente a partir da fermentação da cana-de-açúcar, sendo o melaço eventualmente empregado para a correção do mosto.

PORQUE

Tanto o caldo de cana-de-açúcar quanto o melaço têm como carboidrato predominante em sua composição a glicose, um açúcar diretamente fermentescível.

Analisando-se as afirmações acima, conclui-se que

- (A) as duas afirmações são verdadeiras, e a segunda justifica a primeira.
- (B) as duas afirmações são verdadeiras, e a segunda não justifica a primeira.
- (C) a primeira afirmação é verdadeira, e a segunda é falsa.
- (D) a primeira afirmação é falsa, e a segunda é verdadeira.
- (E) as duas afirmações são falsas.

45

O processo mais empregado para a produção de etanol combustível é o chamado *Melle-Boinot*, que é caracterizado pela reutilização do agente da fermentação.

Para tal produção, as células de leveduras são submetidas a tratamento

- (A) ácido, durante a etapa de fermentação, para a prevenção de contaminação bacteriana no processo.
- (B) ácido, após a etapa de centrifugação, para a neutralização do meio, devido à elevação do valor do pH durante a fermentação alcoólica.
- (C) ácido, após a etapa de centrifugação, para a prevenção de contaminação bacteriana no processo.
- (D) alcalino, durante a etapa de centrifugação, para a neutralização do meio, devido à diminuição do valor do pH durante a fermentação alcoólica.
- (E) térmico, após a etapa de fermentação, para a prevenção de contaminação bacteriana no processo.

46

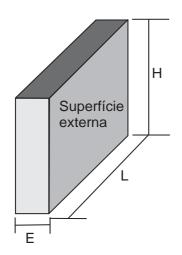
Pode-se escrever a potência irradiada por unidade de área para um sistema a uma temperatura T como sendo I = $\sigma \, \epsilon \, T^4.$ Duas placas paralelas, de área A = 1/5,7 = 0,175 m², estão separadas por uma distância pequena onde existe vácuo. Uma das placas se encontra a uma temperatura $T_1 = 200 \; \text{K}, e$ a outra a $T_2 = 300 \; \text{K}.$

Qual é, em W, o fluxo líquido de calor da placa quente para a placa fria por radiação?

Dados

 $\epsilon =$ 1 para as duas placas Constante de Wien $~\sigma =$ 5,7 x 10 $^{-8}$ W/(m 2 K 4)

- (A) 300
- (B) 200
- (C) 157
- (D) 100
- (E) 65


O transporte dutoviário de gás natural é composto basicamente por gasodutos de transporte e sistemas de compressão (quando necessários), por redutoras de pressão e por sistemas de medição, de supervisão e controle. Esses equipamentos e sistemas têm a finalidade de colocar o gás natural disponível nas Companhias Distribuidoras em todos os pontos de entrega localizados ao longo da Diretriz do Gasoduto.

Cada um desses equipamentos e sistemas desempenha um importante papel; assim, verifica-se que

- (A) o aumento da pressão do gás natural e a sua medição ocorrem nas estações de entrega.
- (B) o programa SCADA (Supervisory Control And Data Acquisition) é um sistema supervisório que permite obter informações sobre os dutos e terminais, por meio de sensores instalados nas estações de medição.
- (C) os gasodutos possuem uma pressão máxima admissível de operação (MAOP) constante.
- (D) as estações de medição medem o volume de gás natural em pontos de interconexão entre trechos do gasoduto.
- (E) as estações de compressão mantêm a pressão do gás para as condições ideais de entrega.

48

As temperaturas das superfícies interna e externa da parede ilustrada na figura abaixo são 15 °C e 2 °C, respectivamente. Essa parede possui 2 m de altura (H), 4 m de largura (L), 0,4 m de espessura (E) e condutividade térmica de 1 W/m. °C.

Nesse caso, a resistência térmica da parede contra a condução de calor, em °C/W, vale

- (A) 0,05
- (B) 0,12
- (C) 1,60
- (D) 20,80
- (E) 260,00

49

Uma bomba alternativa eleva uma quantidade de água, M, de 4.0 kg, a uma altura de H=1.7 m a cada segundo. O líquido está inicialmente em repouso e, ao final do processo, está se movendo a V=4.0 m/s.

Se a potência elétrica utilizada pela bomba é 0,50 kW, qual será seu rendimento?

Dado $g = 10 \text{ m/s}^2$

- (A) 50%
- (B) 42%
- (C) 20%
- (D) 15%
- (E) 10%

50

Em relação aos materiais empregados na construção de gasodutos, considere as afirmações abaixo.

- I Aços para aplicação em dutos rígidos em ambiente offshore requerem algumas características, tais como alta resistência à tração, boa ductibilidade e boa tenacidade à fratura.
- II Aços do tipo API 5L são amplamente empregados na construção de tubulações para gasodutos.
- III Materiais poliméricos podem ser empregados na construção de tubos para gasodutos.

É correto o que se afirma em

- (A) I, apenas.
- (B) I e II, apenas.
- (C) I e III, apenas.
- (D) II e III, apenas.
- (E) I, II e III.

RASCUMINO

	_				CL	CLASSIFIC		ÇÃO	PER		AÇÃO PERIÓDICA DOS ELEMENTOS	S ELEI	MENT	SC						9	
		ا≱				Com mas	mass	as atôm	icas ref	eridas a	sas atômicas referidas ao isótopo 12 do carbono	12 do cai	pono								VIIIA
~	⊤ T	2												13		4	15	16	17	Z Z	υ
	1,0079														IIIA	IVA	W		A VIIA		970
7	з ГП 6,941(2)	ВЕRІLІО 4 9,0122												5 B 10,811(5)	(2)	6 D,511	7 NITROGÊNIO 7 14,007	ОХІСЕЙІО 8 0,099	9 Нейорк	NEÓNIO CO,	ω ⁸
က	22,990 the solution of the sol	мьеиёsio 12 24,305	3	4 8∨i	5	9 8 8	VIB	7 VIIB	∞ ≡	6	≡	=	12 B	OINÌMUJA	SIFICIO 82		тоясово П 30,974	ахоние 32,066(осгово Ссово 35,453	OINÓÐRA E A Š	8 348
4	оігайточ 6 Х 89,098	20 CÁLCIO CA 40,078(4)	Scandio SC 44,956	22 Titalii 47,867	23 V 50,942	СКОМІО	Сг Ог 51,996	25 Mn 54,938	26 E Fe 55,845(2)	COBALTO CO88,9	28,6 Z 88,6	29 COBE CU 63,546(30 Zn 65,39(2	31 GALIO Ga 69,723	СЕ В В В В В В В В В В В В В В В В В В В	32 Ge 72,61(2)	33 AS 74,922	34 SELECTION 34 78,96(3)	35 Br 79,904	OINÔTAIRO SE	36 Kr 83,80
2	37 RUBÍDIO 37 85,468	OIOINQUESS	39 Y 88,906	иресбию 40 Z 2 P1,224(2)	овоји Nb 92,906	MOLIBDÉNIO	42 do 35,94	43 Tc 98,906	PE RU 101,07(2)	45 RÓDIO Rh 102,91	OIDALAPIO	ATAЯЧ	с ^у рміо Сd 112,41	INDIO	ЕЗТАИНО		51 Sb 121,76	52 E Te 127,60(3)	53 <u>§</u> 3) 126,90	XENÓNIO X	t e 29(2)
9	55 CESIO 132,91	56 Вяяно Ва 137,33	57 a 71 La-Lu	72 E Hf 178,49(2)	73 Тапийт 180,96	TUNGSTÊNIO	74 Sign Sign Sign Sign Sign Sign Sign Sign	75 Re 186,21	76 Se OS 190,23(3)	оіајы	78 FE Pt 2 195,08(3)	79 S Au 196,97	80 Öğü Hg 200,59(2	ОІЛАТ	снимво		отимена ВЗ ВЗ 208,98	84 POLÓZIO POLÓZIO 209,98	85 ASTATO At 209,99	OINÓGAR R 22	3 7.02
_	87 FRÂNCIO 87 223,02	88 226,03	89 a 103 Ac-Lr	26 Ж 104	105 рÚвијо Db	SEABÓRGIO	О д Вонкіо	107 Bh	орган 108 Ж	OIRĖTNĖRIO —	ОИЛИППО	OINÙNUNU	оийивіо Т 12 Uub								

	~		_
	71 Lu 174,97		103 Lr 262,11
	LUTÉCIO		LAURÊNCIO
	70 Yb 173,04(3		102 NOВЕЦО 259,10
	69 Tolio 168,93		101 Md 258,10
	68 Er 167,26(3)		РЕВМПО 100 257,10 100 100 100 100 100 100 100 100 100
	67 HO HO 164,93		99 Binstêinio 252,08
	66 Dy 162,50(3)		САЦЕОВИЮ САЦЕОВИЮ 252,08
	65 CS		97 BK 249,08
	OIBRÀT 5		BERQUÉLIO 7
	64 G 157,25(3)		ойко Ст 244,06
	63 Еикоріо 151,96		95 Am 241,06
	62 Sm 150,36(3)		94 Pu 239,05
	OIAÀMAS		PLUTÔNIO
	61 Pm 146,92		93 NETÚNIO NETÚNIO 237,05
	PROMÉCIO		NETI'INIO
	60 Nd H44,24(омуйи 92 238,0
"	59 Pr 140,91		91 Pa 231,04
dio	OIMIGOEARA	SO	PROTACTÍNIO
Série dos Lantanídios	58 CER 140,12	Série dos Actinídios	90 Торяот 232,04
rie dos	La EB 138,91	rie dos	89 Ac 227,03
Sé	OINÂTNAJ	Sé	OINİTƏA
	9		7
	Número Atômico	Símbolo	Massa Atômica

Massa atômica relativa. A incerteza no último dígito $\dot{\epsilon}$ ± 1, exceto quando indicado entre parênteses.

NOME DO ELEMENTO